Section 4: Lab 2 (contd.)

Section 4:1/25/18

Exec

e Replaces the current process, does not create a new process

o Commonly used with fork. Fork first creates a new process and then exec loads a
program and has the newly created process run it.

e Many uses for exec, for example the shell uses fork and exec to run
commands.

Note: Example code is from Hal Perkin’s 333 course. Thanks to Hal and his team for the shell code.

x86 Calling Conventions

o %rdi
o Holds the first argument
o %rsi
o Holds the second argument
e %rsp
o Points to the top of the stack/lowest address (stack grows down)
e Local variables are stored on the stack (If arguments are arrays,

store them on the stack and store a pointer in the register)

int
main(int argc,
char *argv)

First argument will always be
argc (number of arguments)

Second argument will always
be argv, an array of strings
(first string is always the name
of the program)

Exec Stack Layout

$RDI

%RSI

%RSP

Registers

argc

argv

*

High

Low
addresses

addresses

argv is an array of pointers,
therefore %RSI points to an
array on the stack

Since each element of the
argv array is a char *, each
element points to a string
stored elsewhere on the
stack.

You can think of all
variables stored above the
return PC on the stack as
local variables of the caller.

| et's Practicel!

(Get out some paper and pens!)

Practice Exercise 1 - “cat cat.txt”

$RDI

%RSI

%RSP

Registers

|

Stack
grows
down

High
addresses

Low
addresses

TODO:

Draw out the stack layout and

determine the register values for
exec called with “cat cat.txt".

Practice Exercise 1 - “cat cat.txt” Solution

$RDI

%RSI

%RSP

Registers

2

High

argv

Low
addresses

addresses

%RDI, the first argument,
holds argc, which is 2.

%RSI, the second argument,
holds argv, which is a pointer
to the beginning of the argv
array.

%RSP, the stack pointer, has
been properly adjusted to
point to the bottom of the
stack. The value of the return
PC does not matter.

Practice Exercise 2 - “kill -9 500"

$RDI

%RSI

%RSP

Registers

|

Stack
grows
down

High
addresses

Low
addresses

TODO:

Draw out the stack layout and

determine the register values for
exec called with “kill -9 500”.

Practice Exercise 2 - “kill -9 500" Solution

$RDI

%RSI

%RSP

Registers

3

High

argv

Low
addresses

addresses

%RDI, the first argument,
holds argc, which is 3.

%RSI, the second argument,
holds argv, which is a pointer
to the beginning of the argv
array.

%RSP, the stack pointer, has
been properly adjusted to
point to the bottom of the
stack. The value of the return
PC does not matter.

Pipes

e Pipes are a mechanism used for inter-process communication (IPC)

e Withthe sys_pipe, a process sets up a writing and reading end to a
“holding area” where data can be passed from process to process

e What should happen if the write end or the read end is closed (by
potentially multiple writers/readers)? When can you free the buffer of the

pipe?

Pipe allocation

e Pipes should be allocated at runtime, when the pipe is requested by a

process
o What mechanism does xk provide to allocate memory dynamically?

e Each pipe should behave like a file so that the file-oriented system calls

can work as normal with the pipe
o How can you determine whether a struct file is aninode or a pipe?

Design Document Review

e How did it feel to write a design document?

e Was it beneficial to construct your overall code structure before the code
was written?

e How often did you go back and modify the design document as you
iterated on your code?

e Share your design docs with a group near you for some peer review!

